SKID-MOUNTED HYDROGEN EQUIPMENT

Advantages

Module-based

Skid-mounted module-based standard container design for a compact structure of electrolyzers that are convenient to deliver and install.

• High efficiency

Core materials such as high-performance electrodes and membranes and a new design of the flow field for operation under low energy consumption.

High reliability

Long-term stability testing of core components, verification of the equipment under extreme operating conditions, and full-process monitoring and early warning of key parameters and indicators;

All the skid-mounted equipment, pressure-bearing components,

and electrical components verified by CE certification

to meet the requirements for exports.

• High flexibility

Flexible application scenarios, suitable for hydrogenation integrated stations, small and medium-sized refineries, natural gas hydrogen blending and other application scenarios; Flexible operation, allowing operation range of 20~110%, adapted to different hydrogen production conditions.

Technical specifications >>>

NAME	V-200	V–500	V–1000
Hydrogen production capacity (Nm ³ /h)	200	500	1000
DC power consumption (kWh/Nm ³)	≤4.3	≤4.3	≪4.3
Maximum operating pressure (MPa)	3.2	1.8	1.8
Operating temperature (°C)	90±5	90±5	85±5
Crude hydrogen purity	≥99.8%	≥99.8%	≥99.8%
Hydrogen purity after purification	≥99.999%	≥99.999%	≥99.999%
Dew point of hydrogen after purification (°C)	-70	-70	-70
Working load range	20-110%	20-110%	20-110%
Cold start time (min)	≤20	≤20	≤30
Hot start time (min)	≤5	≤5	≤3

(Cold start: the period from starting at the environment temperature to when the hydrogen and oxygen purity is qualified;

hot start: the period from starting at $50\pm5^{\circ}$ C to when the hydrogen and oxygen purity is qualified.)

